
Crack me if you can: Hardware Acceleration Bridging the Gap
between Practical and Theoretical Cryptanalysis?

A Survey

Mustafa Khairallah
School of Physical and Mathematical Sciences, NTU

Singapore
mustafam001@e.ntu.edu.sg

Zakaria Najm
Temasek Labs at NTU
Singapore, TU Delft

zakaria.najm@ntu.edu.sg

Anupam Chattopadhyay
School of Computer Science and Engineering, NTU

Singapore
anupam@ntu.edu.sg

Thomas Peyrin
School of Physical and Mathematical Sciences, NTU

Singapore
thomas.peyrin@ntu.edu.sg

ABSTRACT
Cryptanalysis is an essential part of cryptology. Not just is it useful
to break ciphers for malicious applications, but it is also the basis
for building secure ones. In fact almost all the ciphers still in use are
trusted to be secure mainly due to the fact that many cryptanalysts
are trying hard to break them publicly and failing. However, most of
the time successful cryptanalytic results end up violating the cipher
designers claims, but the attack itself remains theoretical due to the
lack of enough resources/algorithms to efficiently implement it. For
example, while the first practical SHA-1 collision was found in 2017,
most of the ideas and vulnerabilities behind the attack had been
discovered in 2005. The internet and IT industries didn’t give much
attention to the early theoretical results and it wasn’t until 2016
that internet browsers starting getting rid of SHA-1. The leap from
2005 to 2017 was due to advancements in the attack algorithms,
implementation techniques and hardware fabrication technologies.
While hardware fabrication so far keeps on improving according
to Moore’s law, the other two aspects require a lot of research ef-
fort. In this survey, we touch on several examples of these efforts
over the years. The survey is divided into three parts, cryptana-
lytic attacks designed with specific implementation requirements,
previous cryptanalytic machines and quantum computers, the tech-
nology that promises to change how we think about cryptography
and cryptanalysis.

ACM Reference Format:
Mustafa Khairallah, Zakaria Najm, Anupam Chattopadhyay, and Thomas
Peyrin. 2018. Crack me if you can: Hardware Acceleration Bridging the Gap
between Practical and Theoretical Cryptanalysis?: A Survey. In Proceedings
of International Conference On Embedded Computer Systems: Architectures,
Modeling And Simulation (SAMOS’18). ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
While computing machines, hardware acceleration technologies
and cryptography have always been closely related, the use of hard-
ware digital circuits to accelerate cracking secure ciphers even pre-
dates the invention of the Silicone transistor. The events surround-
ing World War II led to the emergence of Modern Cryptography,
where it changed from an art exclusive to military and intelligence
personnel, to a mathematical discipline practiced and studied by
mathematicians and computer scientists, as well. Moreover, as it

was discovered many years later, it was during the World War II
at Bletchley Park in England that the first automated hardware
cryptanalytic machines was built. In 1939, Alan Turing designed a
mechanical machine called "Bombe", which performed statistical
attacks on encrypted German messages, using Enigma [7], inter-
cepted by the British Navy. Later, between 1943 and 1945, British
code breakers built another machine called "Colossus", in order to
break another German cipher, Lorenz. Unlike Bombe, which was
an electro-mechanical machine, Colossus used vacuum tubes and
Boolean functions and is considered as the first programmable,
electronic and digital computer [39].

In this survey, the modern and potentially future hardware ma-
chines for cryptanalytical purposes are discussed. We only consider
cases where a single machine is built in order to either break a
cipher directly or perform a huge computational task that is consid-
ered a milestone towards breaking one. Distributed cryptanalysis
projects over many locations are not considered. Besides, we con-
sider only logical attacks that don’t include assumptions on the
cipher implementations. Hence, side-channel and fault-injection at-
tacks are also not considered, regardless of their costs. In Section 2,
a set of cryptanalytic techniques that require specific assumption
when it comes to the execution platform are discussed. In Section 3,
several examples of implementations or designs of cryptanalytic
hardware machines are provided, showing how new and advancing
technologies push the limits of what was previously considered
impractical. In Section 4, a brief discussion on the effect of quantum
computing and quantum attacks on existing ciphers is provided,
while the survey is concluded in Section 5.

2 CRYPTANALYTIC ATTACKS WITH TIGHT
HARDWARE REQUIREMENTS

Most of the cryptanalytic attacks on ciphers, especially symmet-
ric key ciphers (block ciphers, stream ciphers, hash functions, etc)
consist of at least one phase of executing a complex search al-
gorithm. With the huge input and output spaces of the involved
functions, this step is very expensive in terms of time and/or mem-
ory consumption. Hence, acceleration algorithms and machines
usually target efficient and parallelisable implementations of this
step. In [25], the authors provided three assumptions that cover a
wide variety of attacks and help develop efficient accelerators:

SAMOS’18, July 2018, Samos, Greece Mustafa Khairallah, Zakaria Najm, Anupam Chattopadhyay, and Thomas Peyrin

(1) Cryptanalytic algorithms are parallelisable.
(2) Different nodes need to communicate with each other only

for a very limited amount of time.
(3) Since the target algorithms are computationally intensive,

the communication with the host is very limited compared
to the time spent on the computational tasks.

In this section, we describe how some of the costly attacks can
be adjusted in order to satisfy these conditions and lead to efficient
hardware accelerators. For a wider exploration of different crypt-
analytic techniques, we refer the interested reader to any of these
resources: [19, 42, 48].

2.1 Brute-Force Attacks
Brute-Force attacks play an important role in the security of ciphers,
especially in the field of symmetric key cryptography. Brute-force
attacks refer to attacks where all the possible values of a secret
variable are tried until the correct value (or a set of valid values)
is reached. This type of attack is applicable to any cryptosystem
and provides an upper bound on the computational complexity of
breaking a cipher. For example, since the Data Encryption Stan-
dard (DES) uses a secret key of 56 bits, it requires at most 256
encryptions/decryptions in order to significantly narrow down the
space of possible secret keys. Hence, it was believed when DES
was introduced, that it has a security level of 56 bits. Any attack
that requires less than 256 encryptions/decryptions is considered a
genuine threat to the cipher security. Moreover, while 256 opera-
tions was considered beyond the realm of possibility in the 1980s
and early 1990s, the NIST organization has recently announced
that any security level below 112 will be considered insecure from
now on [1]. However, implementing brute force attacks is not as
straightforward as it sounds and it’s practicality is not just subject
to the availability of resources. A lot of challenges face the attackers
when it comes to memory management, parallelisation and data
sorting/searching.

2.2 Time-Memory-Data Trade-off Attacks
In order to overcome the high time complexity required by most
attacks, there is a trade-off to be made between the time and space
requirements. For example, considering a block cipher EK (p), which
represents a family of bijective permutations parametrized by the
key value K , the attacker can choose on one end of the trade-off
to ask for EK (0) and use brute-force to try all possible keys until
he finds the correct key (or set of keys, as depending on the size
of p and K it may not be possible to find a unique solution using
only a single encryption), or the attacker can pre-compute and sort
EK ′ (0) ∀K

′

∈ 2 |K | , then for any instance of the block cipher the
key recovery takes O (1) as it involves only one memory access.
However, the space complexity of the later case is O (2 |K |). TMDT
attacks try to find a sweet spot between these two extremes, making
complex attacks more practical for implementations. In this section
we describe two of the famous examples for such attacks.

Meet in the Middle Attacks. The MitM attack was introduced by
Diffie and Hellman in 1977 [13]. It applies to scenarios were an
intermediate value during a function execution can be represented
as the output of two independent random mappings. The most

famous example for a cipher vulnerable to this attack is 2DES,
which consists of applying the Data Encryption Standard (DES)
twice using two independent keys, i.e.,

C = EK2 (EK1 (P))

A straightforward brute force attack would require 2112 opera-
tions, since DES has a key size of 56 bits. However, the MitM attack
requires only 257 operations and works as follows. First, we notice
that

I = EK1 (P) = E−1K2
(C)

Second, we notice that I is a collision between two random map-
pings. Hence, finding a pair (K1,K2), such that EK1 (P) = E−1K2

(C),

falls under the birthday problem and requires only 2
|K1 |+|K2 |

2 , i.e.,
256 iterations, on average. Since, every iterations consists of one
encryption and one decryption operations, the overall number of
function calls is 257, which is only twice the brute force complexity
against DES. On the other hand, as most birthday attacks, the MitM
requires a huge memory space, since every execution has to be
stored and compared to all previous executions until the collision
is found.

Hellman Time-Space Trade-off. This attack, first proposed by
Hellman in 1980 [18], targets accelerating brute force attacks. For
simplicity, we consider only the case where the key size equals
the plaintext size. However, the same attack can be generalized to
other cases. The attacker chooses a plain-text P , which he knows
will be encrypted at some point in the future. Then, he selects a
set of possible keys as the starting point of his computation. For
example, he can use the set {Ki |Ki ∈ [0,N]}, where N is one of the
parameters of the time-space trade-off. The next step is to compute
C0
i = EKi (P). The attacker iterates over the computation C

j
i =

EC j−1
i

(P), where j ∈ [1, S] (S is the second parameter of the trade-
off). All the previous step are done offline, without communicating
with the target user. The attacker at this point ends up with N
chains, each has S + 1 nodes, as follows:

C0
0 → C1

0 → C2
0 · · · → CS

0

C0
1 → C1

1 → C2
1 · · · → CS

1
...

C0
N → C1

N → C2
N · · · → CS

N

The previous lists include (S + 1) ∗ (N + 1) Keys. In order to
save memory, the attacker stores only the initial key Ki and the
final value CS

i . Next, in the online phase, the attacker intercepts
a ciphertext C = EK ∗ (P). First, he compares C to the N + 1 final
values in his pre-computed table. IfC = CS

i , sinceC = EK ∗ (P), then
EK ∗ (P) = ECS−1

i
(P). The attacker returns K∗ = CS−1

i . Otherwise,
the attacker sets C0 = C and computes the list in the same manner
as the lists generated during the offline phase:

C0 → C1 → C2 · · · → CS

Crack me if you can SAMOS’18, July 2018, Samos, Greece

xi xi+1 xi+2 xi+3 xi+4 xi+5

x j x j+1 x j+2

xk xk+1 xk+2

xk+3

Figure 1: A simplified functional graph example. An edge
goes from vertex a to vertex H

′

(a)

IfCl = CS
i , then EK ∗ (P) = ECS−l−1

i
(P). In both cases, the attacker

needs to recompute the chain where the collision occurred until
the key value is found. On average, the online phase requires S/2
operations to find the collision and S/2 operations to find the key.
However, since the attack covers only (S+1)∗(N+1) key candidates,
it has a success probability of (S+1)∗(N+1)

|K S |
, where |KS| is the size

of the full key space.

2.3 Parallel Birthday Search Algorithms
So far, we have described three different generic attacks against ci-
phers. All these attacks have one feature in common. A cipher is con-
sidered as a random mapping C = EK ∗ (P) : {0, 1} |P | × {0, 1} |K | →
{0, 1} |C | . In this section, we consider a wider class of functions;
collision-resistant compression functions T = H (x) : {0, 1}n →
{0, 1}t , such that n ≫ t and it is computationally hard to find a pair
(x1,x2) such thatH (x1) = H (x2). This class of functions has several
applications in the construction of secure hash functions and the
cryptanalysis of symmetric key ciphers. For examples, the problem
of finding such a collision is helpful to the meet in the middle attack
described earlier. It is known that the computational complexity of
finding a collision for such a function is upper bounded by the birth-
day bound 2t/2. However, the efficient design of a collision search
algorithm is not a trivial task, specially if the attacker wants to
make use of parallelisation over a set of computing machines. This
issue is discussed in details in [50]. First, we look at the problem
of designing an efficient algorithm for the birthday search prob-
lem on a single processing unit. A straightforward approach is to
compute 2t/2 random instances. With high probability, a colliding
pair exists in the list formed by these instances. However, such
approach requires O (2t/2) memory locations and O (2t) memory
accesses/comparisons. In order to overcome these tight require-
ments, several attacks with different trade-offs have been proposed,
almost all of them share the same property; the function in question
is reduced to T = H

′

(x) : {0, 1}t → {0, 1}t , which is treated as a
pseudo-random function (PRF). One of the useful ways to represent
such a function is using a functional graph, which is a directed
graph with 2t vertices and two vertices x and y with an edge from
x to y are connected if y = H (x), as shown in Figure 1.

The collision search problem can be treated as a graph search
problem, where he attacker is looking for two edges with the same
endpoint but with different start-points. Pollard’s rho method [37]
helps find a collision in the functional graph with a small memory
requirement. The underlying idea is to start at any vertex and

x10 x11 x12 x13 x14 x15

x20 x21 x22

Figure 2: An example of two colliding traces in the func-
tional graph

perform a random walk in the graph until a cycle is found. Unless
the attacker is unlucky to have chosen a starting point that is part
of the cycle, he ends up with a graph that resembles the Greek letter
ρ and the collision is detected.

Nonetheless, Pollard’s rho method cannot be efficiently paral-
lelized without modifications. If an attacker tries to run many in-
stances of the algorithms on several machines, independently, each
machine will try to look for a cycle in a specific part of the func-
tional graph. However, there is no guarantee that the first colliding
pair will be found using a single machine, as each member of the
pair can be found using a different machine. For example, two ma-
chines can enter the same cycle, but the attacker will not detect
this event. Hence, if he usesm machines, he will need O (2t√

m
) time

to find the collision, as opposed to his original target of O (2
t

m).
In [50], the authors proposed a method to achieve O (2

t

m) speed-
up, using limited memory and communication requirements. First,
the attacker defines a distinguished point to be a point H

′

(x) that
has a special property which can be easily checked, e.g. the first
d bits are equal to 0. Second, the attacker choosesm random mes-
sages x10 ,x

2
0 , · · · ,x

m
0 and assigns one of them to each machine.

Third, each machine i computes a trace (x i0,x
i
1, · · · ,x

i
d), where

x ij = H
′

(x ij−1) and x id is a distinguished point. This is a random
walk in the functional graph. If the probability of the condition
x id = H

′

(x id−1) is θ , the average length of the trace d is 1
θ . Hence,

if θ is too large, the traces are too short and the total number of
traces ≈ 2k

θ is in the same order of magnitude of 2k . This means
that the attacker does not observe a significant reduction in the
memory usage compared to a random-search based algorithm. On
the other hand, if θ is too small, the traces become so long, and there
is a risk of hitting a cycle within the trace, without ever hitting a
distinguished point. Hence the choice of θ is crucial for the attack
efficiency. Moreover, it is a good practice to abort the trace after it
becomes too long, e.g. 20θ . The previous two steps are repeated 2t /2θ

m
times. Each trace is specified in the memory as (x i0,d,x

i
d). Finally, a

central server needs to sort these traces efficiently, according to the
values x id and find the traces that have the same endpoint. Once
two similar traces are found, it is easy to find a collision within
them that looks like in Figure 2.

3 HARDWARE MACHINES FOR BREAKING
CIPHERS

3.1 Brute Force Machines
In this section we describe cases where engineers have been able
to build machines to efficiently execute brute force attacks against
certain ciphers.

SAMOS’18, July 2018, Samos, Greece Mustafa Khairallah, Zakaria Najm, Anupam Chattopadhyay, and Thomas Peyrin

Table 1: Some of the attacks performed using the COPA-
COBANA platform

Cipher Attack Type Time Consumed
DES Brute Force 6.4 days
A5/1 Guess and Determine [24] 6 hours

ECC (k=79) Discrete-Log 3.06 hours
ECC (k=97) Discrete-Log 93.4 days

Deep Crack. In 1998, the Electronic Frontier Foundation (EFF)
built a dedicated hardware machine consisting of 1856 ASIC chips
connected to a single PC. The machine was able to test over 90
billions DES keys per second, which means that it can go over all
the 256 DES keys in 9 days. It was able to solve one of the RSA
security DES challenges in 56 hours. The project costed 250,0000
US Dollars and was motivated by the discrepancy between the
estimates of academia and government officials regarding the cost
and time required to break DES [14].

COPACOBANA. In CHES 2006, COPACOBANA [25] was intro-
duced as an FPGA cluster architecture consisting on 120 FPGAs
controlled by a host computer. It is considered to be the first publicly
reported configurable platform built specifically for cryptanalysis
as its main purpose. The design philosophy behind the architec-
ture depends on the three main assumptions in Section 2. These
assumptions are satisfied by both brute force and cryptanalytic
attacks. Hence, the COPACABANA has been used to accelerate
several attacks [16]. We sum up some of these attacks in Table 1.
Some of the attacks performed on the COPACOBANA platform,
e.g. guess and determine attack on A5/1, were specially designed
in the first place to make use of hardware acceleration [24].

WindsorGreen. In 2016, a document was release accidentally
on the New York University server, describing a custom made su-
percomputer designed by the NSA and IBM, which is believed to
have mainly two applications, cracking ciphers and forging crypto-
graphic signatures [2]. However, limited information is available
publicly on the project.

3.2 Acceleration of Collision Attacks on Hash
Functions

In 2005, the first theoretical collision attack on SHA-1 was published
by Wang et al [53]. Since then, a lot of efforts have been targeted
towards making the attack more efficient. These efforts are summa-
rized in Figure 3. In 2015, the authors of [17] provided an estimation
for finding near collisions on SHA-1, which is a critical step in the
collision attacks. The authors provided a design of an Application-
Specific Instruction-set Processor (ASIP), named Cracken, which
executes specific parts of the attack. It was estimated that to exe-
cute the free-start collision and real collision attacks from [43], the
attacks will take 46 and 65 days and cost 15 and 121 million Euros
respectively.

In 2016, the first attack was practically executed using a cluster
of 64 GPUs and took 10 days [45]. Later in 2017, the first real SHA-1
collision was computed [44], using a combination of CPUs and
GPUs, taking 6500 CPU years and 100 GPU years. However, the
exact details of the machine used were not revealed in the paper.

3.3 The Factoring Machine
The problem of efficiently finding the prime factors of an integer
is one of the oldest mathematical problems in the field of Number
Theory. It is also the basis of some of the Public Key Cryptosystems
(PKC), such as RSA. If a computer can factor n = pq into p and q,
it would lead to breaking RSA systems of key size |n |. The Num-
ber Field Sieve (NFS) algorithm is one of the famous algorithms
for solving the factoring problem. However, efficient and cheap
implementations of this algorithm are non-trivial. In [49], the au-
thor describes three different architectures for machine to perform
the NFS algorithm, the cheapest of which costs 400,000 US Dollars
and is estimated to take under one year to break RSA-768 in under
one year. However, the results are highly speculative and are not
supported by any actual implementation.

3.4 Molecular Computers
In [6], Boneh et al. describe an attack on DES that is estimated to
take one day to recover the key. It is based on a theorized underlying
DNA computer and can be extended to any cipher of key size ≤
64 bits. However, The attack has not been implemented in real life
and remains a theoretical idea, until the required DNA computer
becomes available.

3.5 Blockchain Mining
While the topic of blockchain mining is not directly related to
cryptanalysis or breaking ciphers (specifically hash functions), it
is closely related to the acceleration of brute force attacks. The
mining operation involves finding an input block to a secure hash
function such that the output tag is less than a specific value, i.e.
has a certain number of leading 0’s. The number of required leading
0’s defines the complexity of the problem, which is equivalent to a
pre-image attack against a truncated version of the hash function.
If that version of the hash function is pre-image resistant, then the
mining step is equivalent to a brute force pre-image attack. As the
blockchain gets older, the mining step gets more complex. Hence,
several industrial players have been interested into accelerating
these computations. In 2016, Intel applied for a patent for a Bitcoin
mining hardware accelerator [47], which consists of a processor
and a coupled hardware accelerator that uses SHA-256 as the main
underlying hash function. It is claimed that this system can reduce
the power consumption involved in Bitcoin mining by 35%. In April
2018, Samsung has also confirmed that it is building ASIC chips to
mine Bitcoin. The new chips utilize the technology and expertise
of Samsung’s high memory capacity GPUs and can be designed for
a specific hash function, to give customers the freedom to choose
the target blockchain, not being limited to Bitcoin. However, once
fabricated the chip is hash-function specific. It is supposed to in-
crease the power efficiency by 30% and to execute 16 Tera hashes
per second [30].

4 QUANTUM COMPUTERS
In recent years, there has been a substantial amount of research
on quantum computers. If large-scale quantum computers are ever
built, they will be able to break many of the public-key cryptosys-
tems currently in use.

Crack me if you can SAMOS’18, July 2018, Samos, Greece

[8] First Differential Attack

[3]

[38]

[40]

[31]

[21]

[52]

[53]

[51]

[10]

[5]

[54]

[35] [29]

[33] [55]

[12]

[11]

[27]

[32]

[28]

[15] [34] [9]

[4]

[43] [46]

[20] [36] [19]

[56] [23] [45] [22] [44] First Collision

Figure 3: Summary of the improvement and efforts towards accelerating the collision attacks against SHA-1 between 2005 and
2017

The basis of this problem is that the hidden subgroup problem
(HSP) is solvable in finite Abelian groups in quantum polynomial
time. Thus, factorization, discrete logarithm, discrete logarithm in
elliptic curves are solvable in quantum polynomial time as well [41].

The question of when a large-scale quantum computer will be
built is a not obvious. While in the past it was less clear that large
quantum computers are a physical possibility, many scientists now
believe it to be merely a significant engineering challenge. It has
taken almost two decade to deploy the currently used public key
cryptography standards. That’s why, to anticipate, the NIST re-
cently published a call for the post-quantum cryptography stan-
dard.

One of the challenge to solve is to find mechanisms for control-
ling and manipulating the quantum bit easier. Currently a laser is
used to physically move each individual qbit stored in the form of
ion from one location to another. Breaking cryptograhic standards
used today would require to move million of ions at the same time,
so millions of lasers, making it impractical for current technolo-
gies. But recent advances showed that with a new technic from
the university of Sussex called blueprint [26] allows to manipulate
thousands of qubits with currently available technoligies. With this
technology, a large scale quantum computer consisting of millions
of ions would occupy a space the size of a football field, costing
upwards of $120 million .

5 CONCLUSION
Breaking a real world cipher in practice is a scientific and technolog-
ical challenge. When both advances in science and technology gives
signs that a cipher can be broken in practice, new cryptographic
standards are pulled from the current knowledge. This should be
done way before the attack is made practical to absorb the inertia
needed to deploy a new cryptographic standard. From a theoretical

attack and a practical one, there is still a gap, where new discoveries
can be made, that can push further the knowledge that we have to
make even better cryptographic standards. When practical attacks
are not well anticipated, this inertia can make possible, practical
attacks on cryptographic standards that are still in use, which can
be catastrophic.

ACKNOWLEDGMENTS
This study is funded by Temasek Laboratories @ NTU.

REFERENCES
[1] Elaine Barker. 2016. Recommendation for key management part 1: General. NIST

special publication (2016).
[2] Sam Biddle. 2017. NYU ACCIDENTALLY EXPOSED MILITARY CODE-

BREAKING COMPUTER PROJECT TO ENTIRE INTERNET. URL
https://theintercept.com/2017/05/11/nyu-accidentally-exposed-military-code-
breaking-computer-project-to-entire-internet/ (2017).

[3] Eli Biham and Rafi Chen. 2004. Near-collisions of SHA-0. In Annual International
Cryptology Conference. Springer, 290–305.

[4] Eli Biham, Rafi Chen, and Antoine Joux. 2015. Cryptanalysis of SHA-0 and
Reduced SHA-1. Journal of Cryptology 28, 1 (2015), 110–160.

[5] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. 2005. Collisions of SHA-0 and Reduced SHA-1. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 36–57.

[6] Dan Boneh, Christopher Dunworth, and Richard J Lipton. 1995. Breaking DES
Using aMolecular Computer. Proceedings of DIMACSworkshop on DNA computing
(1995).

[7] Frank Carter. 2008. The Turing Bombe. Bletchley Park Trust.
[8] Florent Chabaud and Antoine Joux. 1998. Differential collisions in SHA-0. In

Annual International Cryptology Conference. Springer, 56–71.
[9] Rafael Chen and Eli Biham. 2011. New Techniques for Cryptanalysis of Cryp-

tographic Hash Functions. Ph.D. Dissertation. Computer Science Department,
Technion.

[10] Martin Cochran et al. 2007. Notes on the Wang et al. 263 SHA-1 Differential Path.
IACR Cryptology ePrint Archive 2007 (2007), 474.

[11] Christophe De Canniere, Florian Mendel, and Christian Rechberger. 2007. Col-
lisions for 70-Step SHA-1: on the full cost of collision search. In International
Workshop on Selected Areas in Cryptography. Springer, 56–73.

SAMOS’18, July 2018, Samos, Greece Mustafa Khairallah, Zakaria Najm, Anupam Chattopadhyay, and Thomas Peyrin

[12] Christophe De Canniere and Christian Rechberger. 2006. Finding SHA-1 char-
acteristics: General results and applications. In International Conference on the
Theory and Application of Cryptology and Information Security. Springer, 1–20.

[13] Whitfield Diffie and Martin E Hellman. 1977. Special feature exhaustive crypt-
analysis of the NBS data encryption standard. Computer 10, 6 (1977), 74–84.

[14] John Gilmore. 1998. Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design.

[15] Evgeny A Grechnikov. 2010. Collisions for 72-step and 73-step SHA-1: Improve-
ments in the Method of Characteristics. IACR Cryptology ePrint Archive 2010
(2010), 413.

[16] Tim Güneysu, Timo Kasper, Martin Novotnỳ, Christof Paar, and Andy Rupp.
2008. Cryptanalysis with COPACOBANA. IEEE Trans. Comput. 57, 11 (2008),
1498–1513.

[17] Muhammad Hassan, Ayesha Khalid, Anupam Chattopadhyay, Christian Rech-
berger, Tim Güneysu, and Christof Paar. 2015. New asic/fpga cost estimates for
sha-1 collisions. In Digital System Design (DSD), 2015 Euromicro Conference on.
IEEE, 669–676.

[18] Martin Hellman. 1980. A cryptanalytic time-memory trade-off. IEEE transactions
on Information Theory 26, 4 (1980), 401–406.

[19] Antoine Joux. 2009. Algorithmic cryptanalysis. CRC Press.
[20] Antoine Joux and Thomas Peyrin. 2007. Hash functions and the (amplified)

boomerang attack. In Annual International Cryptology Conference. Springer, 244–
263.

[21] Charanjit S Jutla and Anindya C Patthak. 2005. A Matching Lower Bound on
the Minimum Weight of SHA-1 Expansion Code. IACR Cryptology ePrint Archive
2005 (2005), 266.

[22] Pierre Karpman. 2016. Analyse de primitives symétriques. Ph.D. Dissertation.
Université Paris-Saclay.

[23] Pierre Karpman, Thomas Peyrin, and Marc Stevens. 2015. Practical free-start
collision attacks on 76-step SHA-1. In Annual Cryptology Conference. Springer,
623–642.

[24] J Keller and B Seitz. 2012. A Hardware-Based Attack on the A5/1 Stream Cipher
(2001). URL http://pv. fernuni-hagen. de/docs/apc2001-final. pdf. Accessed April
(2012).

[25] Sandeep Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimmler.
2006. Breaking ciphers with COPACOBANA–a cost-optimized parallel code
breaker. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 101–118.

[26] Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt,
Christof Wunderlich, andWinfried K Hensinger. 2017. Blueprint for a microwave
trapped ion quantum computer. In Science Advances, Vol. 3. American Association
for the Advancement of Science, e1601540.

[27] Stéphane Manuel. 2008. Classification and generation of disturbance vectors for
collision attacks against SHA-1. (2008).

[28] Stéphane Manuel. 2011. Classification and generation of disturbance vectors for
collision attacks against SHA-1. Designs, Codes and Cryptography 59, 1-3 (2011),
247–263.

[29] Stéphane Manuel and Thomas Peyrin. 2008. Collisions on SHA-0 in one hour. In
International Workshop on Fast Software Encryption. Springer, 16–35.

[30] Nick Marinoff. 2018. Samsung Is Building ASIC Chips for Halong Min-
ing. URL https://bitcoinmagazine.com/articles/samsung-building-asic-chips-halong-
mining/ (2018).

[31] Krystian Matusiewicz and Josef Pieprzyk. 2006. Finding good differential patterns
for attacks on SHA-1. In Coding and Cryptography. Springer, 164–177.

[32] Cameron McDonald, Philip Hawkes, and Josef Pieprzyk. 2009. Differential Path
for SHA-1 with complexity O (252). IACR Cryptology ePrint Archive 2009 (2009),
259.

[33] Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen.
2006. The impact of carries on the complexity of collision attacks on SHA-1. In
International Workshop on Fast Software Encryption. Springer, 278–292.

[34] Florian Mendel, Christian Rechberger, and Vincent Rijmen. 2007. Update on
SHA-1. rump session of CRYPTO 2007 (2007).

[35] Yusuke Naito, Yu Sasaki, Takeshi Shimoyama, Jun Yajima, Noboru Kunihiro,
and Kazuo Ohta. 2006. Improved collision search for SHA-0. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 21–36.

[36] Thomas Peyrin. 2008. Analyse de fonctions de hachage cryptographiques. Ph.D.
Dissertation. PhD thesis, University of Versailles.

[37] John M Pollard. 1978. Monte Carlo methods for index computation
(ðİŚŽðİŚĲðİŚŚðİŚİ). Mathematics of computation 32, 143 (1978), 918–924.

[38] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. 2005. Exploiting
coding theory for collision attacks on SHA-1. In IMA International Conference on
Cryptography and Coding. Springer, 78–95.

[39] Brian Randell. 1982. Colossus: Godfather of the computer. In The Origins of
Digital Computers. Springer, 349–354.

[40] Vincent Rijmen and Elisabeth Oswald. 2005. Update on SHA-1. In Cryptogra-
phersâĂŹ Track at the RSA Conference. Springer, 58–71.

[41] Mikolos Santha. 2018. Quantum cryptanalysis: How to break some classical
cryptosystems with quantum computers?. In FWS01 Quantum Cryptography.
Centre for Quantum Technologies, NUS Singapore and CNRS IRIF, Universite
Paris Diderot France.

[42] Mark Stamp and Richard M Low. 2007. Applied cryptanalysis: breaking ciphers in
the real world. John Wiley & Sons.

[43] Marc Stevens. 2013. New collision attacks on SHA-1 based on optimal joint
local-collision analysis. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 245–261.

[44] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.
2017. The first collision for full SHA-1. In Annual International Cryptology
Conference. Springer, 570–596.

[45] Marc Stevens, Pierre Karpman, and Thomas Peyrin. 2016. Freestart collision for
full SHA-1. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 459–483.

[46] Marc Martinus Jacobus Stevens et al. 2012. Attacks on hash functions and appli-
cations. Mathematical Institute, Faculty of Science, Leiden University.

[47] Vikram Suresh, Sudhir Satpathy, and Sanu Mathew. 2018. Bitcoin mining hard-
ware accelerator with optimized message digest and message scheduler datapath.
US Patent App. 15/274,200.

[48] Christopher Swenson. 2008. Modern cryptanalysis: techniques for advanced code
breaking. John Wiley & Sons.

[49] Eran Tromer and ŒćŒĺŒ§ ŒŸŒĺŒŢŒđŒĺ. 2007. Hardware-based cryptanalysis.
[50] Paul C Van Oorschot and Michael J Wiener. 1999. Parallel collision search with

cryptanalytic applications. Journal of cryptology 12, 1 (1999), 1–28.
[51] Xiaoyun Wang. 2006. Cryptanalysis of hash functions and potential dangers. In

Invited Talk at the Cryptographer’s Track at RSA Conference 2006.
[52] Xiaoyun Wang, Andrew C Yao, and Frances Yao. 2005. Cryptanalysis on SHA-1.

In Cryptographic Hash Workshop hosted by NIST.
[53] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. 2005. Finding collisions in the

full SHA-1. In Annual international cryptology conference. Springer, 17–36.
[54] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. 2005. Efficient collision search

attacks on SHA-0. In Annual International Cryptology Conference. Springer, 1–16.
[55] Jun Yajima, Terutoshi Iwasaki, Yusuke Naito, Yu Sasaki, Takeshi Shimoyama,

Noboru Kunihiro, and Kazuo Ohta. 2008. A strict evaluation method on the
number of conditions for the SHA-1 collision search. In Proceedings of the 2008
ACM symposium on Information, computer and communications security. ACM,
10–20.

[56] Jun Yajima, Yu Sasaki, Yusuke Naito, Terutoshi Iwasaki, Takeshi Shimoyama,
Noboru Kunihiro, and Kazuo Ohta. 2007. A new strategy for finding a differential
path of SHA-1. In Australasian Conference on Information Security and Privacy.
Springer, 45–58.

	Abstract
	1 Introduction
	2 Cryptanalytic Attacks with Tight Hardware Requirements
	2.1 Brute-Force Attacks
	2.2 Time-Memory-Data Trade-off Attacks
	2.3 Parallel Birthday Search Algorithms

	3 Hardware Machines for Breaking Ciphers
	3.1 Brute Force Machines
	3.2 Acceleration of Collision Attacks on Hash Functions
	3.3 The Factoring Machine
	3.4 Molecular Computers
	3.5 Blockchain Mining

	4 Quantum Computers
	5 Conclusion
	Acknowledgments
	References

